EELS: Electron Energy-Loss Spectroscopy

- avoid confusion with “EELS” of surface science techniques (meV energy losses of electrons reflected at surfaces in UHV)

- EELS in the TEM:
 - complimentary to XEDS
 - however: no “routine” method – interpretation less straight forward
 - on the other hand: more information (local composition, oxidation state, interatomic bonding, local density of state, band gaps)

- principle of an EELS spectrometer for TEM (magnetic prisma):
• requirements:
 – energy-discriminating ray path → energy-dispersive plane
 – focus all electron of the same kinetic energy on one line (independent of the angle their path makes with the optic axis)
 → “lens”, rounded surfaces at entrance an exit plane
 – conjugate plane of the energy-dispersive plane:
 · TEM: back focal plane of the projective lens (⇒ spectrometer largely independent of microscope settings)
 · DSTEM: plane of the object (⇒ align specimen height)
 ⇒ focus spectrometer

• realization (GATAN 666 PEELS, “parallel” EELS spectrometer)

• only one manufacturer (GATAN)

• evaluation of spectra requires computer system with adequate software (EL/P, GATAN)
SEELS und PEELS

- formerly: serial EELS spectrometers → SEELS
 - detector: slit + scintillator + photo-multiplier
 - “ramp” magnetic field
 - inefficient: drift, contamination
• later development: parallel EELS spectrometer → PEELS

- detector: diode array
- 100- to 1000 times more efficient than SEELS
EELS in TEM-Image and TEM-Diffraction Mode

• remember:
 – the conjugate plane of the energy-dispersive plane in the spectrometer is the back focal plane of the projective lens
 ⇔ the “object” of the spectrometer is the intensity pattern in the back focal plane of the projective lens

• TEM imaging mode:
 – image on the TEM screen
 ⇒ diffraction pattern at the back focal plane of the projective lens
 ⇒ spectrometer “views” a diffraction pattern, “diffraction coupling”

• TEM-diffraction mode:
 – diffraction pattern on the TEM screen
 ⇒ image at the back focal plane of the projective lens
 ⇒ spectrometer “views” an image, “image coupling”

Parameters Characterizing an EELS Spectrometer

• dispersion
 – definition: \(\frac{dx}{dE} \)

 \(x \): spatial coordinate in the energy-dispersive plane; \(E \): energy of the electron.
 – dispersion varies with
• energy of the primary electrons
• strength of the magnet in the prism

– typical value of the dispersion for SEELS:

\[
\frac{dx}{dE} \approx 2 \ \mu m/eV
\]

– PEELS: larger (≈ 1,5 μm/eV)

• energy resolution ΔE

– definition: ΔE equals full width at half of the maximum that corresponds to the primary electrons (FWHM of zero-loss peak)

→ focus (!) spectrometer to back focal plane of the projective lens (or plane of the object in STEM)

– ΔE depends on the electron source of the microscope (ΔE[W] > ΔE[LaB₆] > ΔE[FEG])

– example: for cold FEG, ΔE can be as small as ≈ 0,3 eV

– energy resolution drops with increasing energy loss of the electrons being analyzed

• point-spread function

– cross-talk of the YAG scintillator in the PEELS

– example: even if the width of the zero-loss maximum corresponds to only one channel, a signal also appears in neighboring channels

→ “delocalization” of information in the EELS spectrum

• spectrometer collection semiangle, β

– definition:
• most important parameter (for example, when comparing spectra)

- large collection angles β will give high intensity in the spectrum

- β depends on the mode of the microscope:
 - DSTEM:

 $$\beta = \frac{d}{2h}$$

 - TEM:

 - TEM imaging mode \Leftrightarrow spectrometer “views” diffraction pattern
 - entrance aperture \Leftrightarrow objective aperture
 - “without” objective aperture $\Rightarrow \beta \approx 100$ mrad
– with objective aperture
(spurious Bremsstrahlung excludes simultaneous XEDS!):

\[\beta = \frac{\beta_{\text{Ob}}}{M} \]

\(\beta \): aperture semiangle at the objective lens; \(M \): magnification.
- TEM-diffraction mode \Leftrightarrow spectrometer “views” image

specimen

$f \approx 3\text{mm}$

objective aperture

intermediate lens(es)

projector lens

back focal plane of projector lens, IMAGE

diffraction pattern

d_{\text{eff}}

effective spectrometer entrance aperture

d_{\text{eff}}$

β

D

D

hkl

CBED disks

2α

2β

$2\beta_B$
– in this case,

\[\beta = \frac{d_{\text{eff}} \cdot 2 \theta_B}{2R} \]

– large aperture (high intensity, large \(\beta \)) degrades the energy resolution

• spatial resolution

– depends on operating mode (TEM imaging or TEM diffraction)

– TEM imaging mode: origin of the signal corresponds to the demagnified image of the spectrometer aperture in the object plane

– example:
 - magnification 100.000 \(\times \)
 - aperture of the EELS spectrometer = 1 mm
 \[\Rightarrow \] diameter of the object area contributing to the spectrum: 10 nm

– however: at large energy losses the chromatic aberration of the objective lens introduces contributions from object regions outside of this region (typical offset: 100 nm)

\[\Rightarrow \] TEM imaging mode is appropriate for recording EELS spectra with large acceptance angle \(\beta \) and high energy resolution; the spatial resolution, however, may be only moderate

– for highest spatial resolution use TEM-diffraction mode!
 (resolution \(\leftrightarrow \) beam diameter at the specimen)

– TEM: limit the region that contributes to the EELS spectrum by means of the area-selecting aperture (SAD aperture in the image plane of the intermediate lens)

– DSTEM: focused electron beam, limits the object region that contributes to the spectrum

– feasible: spatial resolution approaching single atomic columns
EELS Spectra

- processes of inelastic electron scattering, ordered according to probability / increasing energy loss:

<table>
<thead>
<tr>
<th>process</th>
<th>energy loss E [eV]</th>
<th>scattering angle θ_E [mrad]</th>
</tr>
</thead>
<tbody>
<tr>
<td>phonons</td>
<td>≈ 0.02</td>
<td>5-15</td>
</tr>
<tr>
<td>intraband transitions</td>
<td>5-25</td>
<td>5-10</td>
</tr>
<tr>
<td>plasmons</td>
<td>5-25</td>
<td><0.1</td>
</tr>
<tr>
<td>ionization</td>
<td>10-1000</td>
<td>1-5</td>
</tr>
</tbody>
</table>

- scattering angle θ_E (semitangle of scattering cone) varies with energy E of the electrons and with the energy loss, E:

$$\theta_E = \frac{E}{2E} = \sqrt{1 - \frac{v^2}{c^2}}$$

E: energy loss; E: total energy of the primary electrons (rest energy + kinetic energy); m_0: rest mass of the electron; v: velocity of the electron; c: velocity of light (vacuum).

The Zero-Loss Peak

- main feature in EELS spectra of thin specimens

- originates from electrons that have lost no energy on their way through the specimen (except for small losses owing to phonon scattering)
• corresponds to undiffracted beam in the diffraction pattern (Bragg reflections do not contribute to the EELS spectrum, owing to the large diffraction angles)

• width of the zero-loss peak: energy spread of the electron source (thermal emitter, field-emission gun)

• zero-loss peak contains no analytical information about the specimen

Low-Loss Region

• energy losses up to 50 eV

• reflects excitation of
 – plasmons
 – interband transitions
Plasmons

- dominant in materials with "weakly bound", "quasi-free" electrons

→ pronounced plasmon peaks from metals
 (however also from polymers – not understood yet)

- plasmonen energy:
 \[E_P = \frac{h}{2\pi} \omega_P = \frac{h}{2\pi} \sqrt{\frac{nen^2}{\epsilon_0 m}} \]

 \(\omega_P\): Plasmonenfrequenz; \(n\): lokale Dichte schwach gebundener Elektronen; \(\epsilon_0\): Influ-
 enzkonstante; \(m\): Elektronenmasse; \(e\): Elementarladung; \(h\): Planck-Konstante.

→ depends on local density \(n\) of weakly bound electrons
 - varies with composition
 - use for microanalysis

- consider plasmons in the interior of a material (longitudinal charge-
 density waves)

- however: excitation of plasmons at the surface of the TEM specimen can
 play a role, too (transversal charge-density waves)

- typical lifetime of plasmons: \(10^{-15}\) s

→ localized to \(\approx 10\) nm

- mean free path length for electron scattering at plasmons: \(\approx 100\) nm

→ plasmon losses always occur – except, maybe, in ultra-thin specimens
• thicker samples: multiple plasmon losses interfere with straightforward interpretation of the EELS spectrum

• example: Al
in general: easiest interpretation of for single electron scattering
⇒ thin TEM specimen!

Band-Band Transitions

- interband transitions
- intraband transitions

- “one electron” interaction with small energy losses
 ⇒ excitation of an electron to an orbital of higher quantum number

- typical energy loss of the primary electron: 25 eV

- example: electron energy losses at π-orbitals of carbon molecules produce characteristic “fingerprint” in the EELS spectrum

- physical understanding still underdeveloped

- quantitative predictioin of the EELS spectrum in the low-loss region not yet possible

- fingerprints: “EELS-Atlas” (library of spectra)

- enables identification of characteristic features in the low-loss region of the spectrum
- example:
 Al atoms in different environments

![Graph showing energy loss for different substances](image)

- excitation that frees a weakly bound electron from the coulomb field of the atomic nuclei:
 - secondary electron
 - typical energy loss of the primary electron: $E < 20\,\text{eV}$

- outer electrons determine the "response" of the material to an outer electrical field
→ typical excitations in the region $E<10\,\text{eV}$ of the EELS spectrum

→ information about the dielectric function

High-Loss Region

• energy losses $E>50\,\text{eV}$

• remember: the closer a primary electron approaches the nucleus of an atom, the larger can be the energy loss during inelastic scattering

→ $E>50\,\text{eV}$ ↔ inelastic scattering in *inner* regions of atoms

• in particular: ionisation of inner shells (K, L, M, …)

⇒ element-characteristic energy losses → ATEM

• advantage of EELS versus XEDS:
 – energy loss of the primary electron does not depend on the way in which the atom returns to the ground state

⇒ unlike XEDS, detection of inner-shell ionization by EELS does not depend on fluorescence yield (ratio of X-ray emission and emission of Auger electrons)

⇒ suitable to detect *light* elements

• inner-shell ionization

 ⇒ EELS spectrum features “absorption edges”
- examples of absorption edges:

![Graphs showing examples of absorption edges](image1)

- EXELFS
- ELNES
- ionization + plasmons
- increased background
• absorption edges:
 – onset energy ↔ *minimum* energy transfer $E = E_c$ for ionization
 (binding energy of the inner-shell electron to the nucleus of atom)
 – at this energy the scattering cross-section reaches its maximum
 – however, ionization occurs also with larger energy losses: $E > E_c$
 – scattering cross-section decreases with increasing energy loss E
 ⇒ intensity of the absorption edge *decreases* with increasing energy loss

• nomenclature of absorption edges (or “ionization” edges):
• background
 – origin:
 · *multiple* inelastic electron scattering
 · extension of previous absorption edges
 – decays rapidly (power law)

• absorption edges feature *fine structure*
 – from $E = E_c$ to $E_c + 50 \text{ eV}$ (by definition): *near-edge structure*
 \rightarrow ELNES, “electron loss near-edge structure”
 \rightarrow information on local density of empty states, oxidation state, …
 – $E > E_c + 50 \text{ eV}$: extended fine structure
 \rightarrow EXELFS, “extended energy-loss fine structure”
 \rightarrow information on local coordination of the respective atom
 – multiple inelastic scattering
 · ionization followed by plasmon scattering
 \rightarrow modulation at $E_c + 15..25 \text{ eV}$

\[
\begin{array}{c}
N \\
\hline
\text{ELNES} \quad \text{EXELFS} \\
\begin{array}{c}
\text{plasmons} \\
50 \text{ eV}
\end{array}
\end{array}
\]
• correlation between ELNES and electron band structure?

• example: NiO

⇒ electron-loss near-edge structure (ELNES):
 − probes local density of unoccupied states (DOS)
 − example NiO:
 • L_2 and L_3 yield two sharp maxima ("white lines")

⇔ empty 3d states
– counterexample: metallic Cu
 · 3d states occupied
 · no white lines

⇒ advantage of EELS versus XEDS:
 – more information
 – enables not only identification of elements and quantification of local composition, but also analysis of electronic structure (density of empty states, oxidation state, local coordination, bandgap, …)
 – disadvantage: interpretation of EELS spectra can be difficult
 · absorption edges have complex shape
 · quantification of local concentrations requires evaluation of extended absorption edges, which typically have a complex shape
 · problems: rapid variation of the background, overlap of absorption edges

• further advantage of EELS: more efficient than XEDS
 – typical inner-shell energy loss: $E \approx 1000$ eV

⇒ $\theta_E \approx 5$ mrad for 100 keV electrons
 (see expression for θ_E above)

 – compare plasmons: 10-15 mrad
 – phonon scattering and elastic scattering: scattering angles much larger

⇒ electrons with energy losses by inner-shell ionization or plasmon scattering:
 scattering mainly in forward direction
– scattering mainly in *forward* direction enables much more *efficient* detection than with XEDS:

• further example: EELS spectrum of BN (boron nitride)
Qualitative EELS

- interpretation of EELS spectra is often more difficult than in XEDS
- evaluation of EELS spectra is less straight-forward than in XEDS

Optimization of experimental parameters

- with increasing accelerating voltage
 - the scattering cross-section for ionization decreases
 \Rightarrow signal decreases – but background decreases even quicker!
 \Rightarrow to maximize the signal-to-background ratio, increase the accelerating voltage
- convergence semiangle α of the primary electron beam
 - only matters if $\alpha > \beta$ (acceptance angle of the spectrometers)
 - no problem in TEM-diffraction mode
 - TEM-image mode with $\alpha > \beta$:
 quantification requires correction factor for ionization cross-section
- beam diameter and beam current:
 - trade-off between spatial resolution and signal-to-noise ratio
- specimen thickness
– thick specimens ⇒ multiple scattering, quantification requires deconvolution of spectrum (⇒ loss of information)
⇒ specimen should be as thin as possible!

• acceptance angle β of the spectrometer
 – trade-off between intensity, spatial resolution, and energy resolution
 – β large in TEM-image mode, small in TEM-diffraction mode
 (controlled by entrance aperture)

• energy resolution
 – limited by energy spread of the electron source
 – field-emission gun better than thermal emitter
 – cold FEG better than Schottky emitter

• indicator of spectrum quality: “jump ratio”

– jump ratio should exceed 5 for C K edge (film thickness \approx 50nm)
Qualitative Interpretation of EELS Spectra

- EELS spectra hardly feature artifacts one could misinterpret as ionization edges (≠ XEDS)

- compare spectrum with reference spectra (EELS Atlas)

- edges must occur in families
 (corresponding to families of peaks in XEDS)

- for quantification choose K or L edges
 (for elements with atomic numbers below 13 (Al) the spectrum only feature K edges)

- problem: onset energy E_c of edges often not sharp, particularly for M, N, and O edges
Quantitative EELS

- consider: K edge of an element in an EELS spectrum (special case, but method works in general)
- intensity I_K above the background follows from incident intensity I_T by multiplication with the ionization probability P_K:
 $$I_K = P_K I_T$$
- this equation neglects that fact that one only detects electrons in a limited solid angle
- assumption: only single inelastic scattering
- this leads to the Ansatz
 $$P_K = N \sigma_K \exp \left[\frac{t}{\lambda_K} \right]$$

σ_K: ionization cross-section of the K shell; λ_K: mean free path length for inelastic scattering; N: specimen atoms per unit area in the projection; t: specimen thickness.
- assume that mean free path length λ_K is large compared to the specimen thickness t; required to justify assumption of single inelastic scattering
 $$\Rightarrow$$ the exponential function adopts a value close to 1 an, such that gild:
 $$I_K \approx N \sigma_K I_T$$
- this implies
 $$I_K = P_K I_T$$
• this means: one can determine the number density N of atoms (in the illuminated region and projected to two dimensions) by
 – measuring the intensity I_K of the K edge above the background,
 – dividing this intensity by the total intensity I_T, and
 – dividing by the ionization cross-section, σ_K

• to quantify the relative amounts of only two elements A and B, one does not need to know the total intensity:

\[
\frac{N_A}{N_B} = \frac{I_K^A \sigma_K^B}{I_K^B \sigma_K^A}
\]

• corresponding expressions describe the concentration ratio of A and B to other elements or the intensity ratios between different ionization edges of the same element

• problems
 – background not precisely known
 – integration of intensity in absorption edges only possible over a limited range Δ of energies; typical width: $\Delta \approx 50$ eV

• this leads to

\[
I_K[\Delta] = N\sigma_K[\Delta]I_l[\Delta]
\]

• in this equation, I_T was replaced by I_l, the intensity in an energy window of finite width Δ, which includes the zero-loss region and part of the low-loss region

• moreover, detection of electrons is limited to a limited solid angle β, thus:
\[I_K[\beta \Delta] = N \sigma_K[\beta \Delta] I_l[\beta \Delta] \]

\(\sigma_K[\beta \Delta] \): “partial” ionization cross-section.

- this leads to the following expression for the concentration ratio of two elements, A and B:

\[
\frac{N_A}{N_B} = \frac{I^K_A[\beta \Delta]}{I^K_B[\beta \Delta]} \frac{\sigma_K^B[\beta \Delta]}{\sigma_K^A[\beta \Delta]}
\]

\(\rightarrow \) the ratio

\[
\frac{\sigma_K^B[\beta \Delta]}{\sigma_K^A[\beta \Delta]}
\]

of the partial cross-sections corresponds to the \(k \) factor in XEDS

- experimental experience:
 - requirement of single inelastic scattering is easy to fulfill
 - however: already for relatively thin TEM specimens, multiple scattering becomes an issue (10..20% error owing to multiple scattering)
 - thicker specimens: “de-convolute” spectrum

Background Subtraction

- origin of background:
 - multiple scattering
 - extension of absorption edges with onset at lower energies
• so far, there is no physical theory to predict the background (corresponding to the Kramers relation in XEDS)

→ phenomenological description

• methods of background subtraction:
 – fit an analytical function to the experimentally observed background
 – differentiate

Background subtraction by Fitting an Analytical Function

![Background subtraction diagram]

• Ansatz for function describing the background:

\[I_U = A \cdot E^{-r} \]

E: energy loss; \(I_U \): background intensity in the channel that corresponds to the energy loss \(E \); \(A, r \): fitting parameters, depending on \(E \) (!).
• exponent parameter r:
 – typical value: between 2 and 5
 – decreases with increasing specimen thickness t
 – decreases with increasing acceptance angle β of the spectrometer
 – decreases with increasing energy loss E

• intensity variation of absorption edges can be described accordingly:

\[I_A = B \cdot E^{-s} \]

• however: power law with constant parameters matches the true intensity variation only across small energy intervals $[E_1, E_2]$

• the width Δ of the energy window $[E_1, E_2]$ should be small enough to satisfy $E_2 / E_1 < 1.5$

• example Ni-L$_{2,3}$ edge:
Background Subtraction by Differentiation

- corresponds differentiation of the EELS spectrum

- record two spectra with small relative shift along the energy axis (relatively simple with PEELS)

- difference of the two spectra
 - vanishes in regions of slow intensity variation → background
 - regions of rapid variation appear as maxima → edges

- example: background subtraction in the EELS spectrum of Al–Li
Integration of Absorption Edges

- method depends on method of background subtraction
 - background subtraction differentiation: comparison with reference spectra (library)
 - background subtraction by fitting an analytical function: proceed as follows

- energy window Δ for background subtraction should not be too large

- often the onset of subsequent absorption edges limits the width of the energy window Δ

- normally, one chooses $E_1 = E_c$

- exception: pronounced pre-edge structure or ELNES (is not accounted for in present theories of ionization cross-section)

- *absolute* quantification of atom number $N \Rightarrow$ determine I_1 by integrating over the zero-loss peak and the low-loss region for determining a concentration *ratio*, I_1 is not required

Determination of the Partial Scattering Cross-Section σ

- “sensitivity factor”: ratio of the partial scattering cross-sections $\sigma[\beta \Delta]$ the two elements A and B possess for ionization (corresponds to k factor in XEDS)

- determine $\sigma[\beta \Delta]$
 - theoretically (computer programs SIGMAK and SIGMAL)
– experimentally, by comparing the experimental EELS spectrum with standard spectrum

• model on which the programs SIGMAK and SIGMAL are based:
 – consider the respective atom of atomic number Z as H atom with charge Z in the nucleus, but without outer electrons
 – owing to the neglect ion of the outer electrons this theory is best suited for describing K edges
 – this Ansatz does not allow for any fine structure of absorption edges
 → if the experimentally observed edge actually possesses a pronounced fine structure, do not choose $E_1 = E_c$ but $E_1 > E_c$
 – apart from the fine structure, SIGMAK yields a reasonable approximation for experimental observations
 – example: N-K edge
Experimental *Determination of Scattering Cross-Sections*

- by mean of standard specimens
- analogy with “standard” method for determining the k factor in XEDS
- why is comparison with standard specimens not as popular in EELS as in XEDS?

→ EELS spectra depend on a larger number of parameters, all of which would have to be met by the standard specimen:
– chemistry
 · nature of interatomic bonds
 · electron band structure
 · oxidation state
– specimen thickness t
– experimental conditions of EELS
 · Δ
 · β
 · E_0

• particularly important: thickness of the TEM specimen

• remarkable trend:
 – in EELS the comparison with “standard” specimens gains more and more importance
 (particularly for analyzing light elements)
 – in XEDS, on the other hand, theoretical methods for determining k factors gain more and more importance